Descriptive Statistics

Calculate and verify statistical descriptors
-
Max: `hat(x)`
Min: `ul (x)`
Average: `bar(x)`
Variance: `bar(bar(x))`
-
Steps (Total stopping time): `n`
Height: `u`
Odd steps: `o`
Even Steps: `e`
Completeness: `c`
Finesse: `gamma`
-
Total Stopping Time : `n`
Height : `u`
At `n` | Minimum | Maximum | Average | Variance |
`o` | `0` | `hat(o)_n` | `n/4` | `(3*n)/16` |
`e` | `n-hat(o)_n` | `n` | `(3*n)/4` | `(3*n)/16` |
`u` | `n*ln(2)-hat(o)_n*ln(3)` | `n*ln(2)` | `K_1*n` | `(3*n*ln(3)^2)/16` |
`c` | `0` | `hat(o)_n/n` | `1/4` | `3/(16*n)` |
`gamma` | `1/ln(2)` | `n/(n*ln(2)-hat(o)_n*ln(3))` | `~~(4*K_1^2*n+12*ln(3)^2)/(K_1^3*n^2)` | `~~(48*ln(3)^2)/(K_1^4*n)` |
At `u` | Minimum | Maximum | Average | Variance |
`n` | `u/ln(2)` | `(u+hat(o)_u*ln(3))/ln(2)` | `C_1*u` | `C_1^3*ln(3)/4*u` |
`o` | `0` | `hat(o)_u` | `C_1*u/2` | `C_1^3*ln(2)^2/(4*ln(3))*u` |
`e` | `u/ln(2)` | `(u+hat(o)_u*(ln(3)-ln(2)))/ln(2)` | `C_1*u/2` | `C_1^3*(ln(3)-ln(2))^2/(4*ln(3))*u` |
`c` | `0` | `(hat(o)_u*ln(2))/(u+hat(o)_u*ln(3))` | `~~1/2-1/(4*u)` | `~~1/(4*C_1*u*ln(3))` |
`gamma` | `1/ln(2)` | `(u+hat(o)_u*ln(3))/(ln(2)*u)` | `C_1` | `C_1^3*ln(3)/(4*u)` |
At given Total Stopping Time
Experimental (real) data are created by contructing Total Stopping Time Classes `R_k`up to class `R_(50)` by`R_0={1}, R_1={2}, R_3={4}`
`R_(k+1)={T(x_i in R_k)}uu{B(x_i in R_knn[dot2]_3)}`
Number of values
the model is`r_(n,o)=(((o),(n)))/(3^o)`
`r_n=sum_(o=0)^nr_(n,o)=(4/3)^n`

Odd Steps
Minimum
`AAn, EEz=2^n, sigma_(oo)(z)=n^^o(z)=0``rArr ul(o)_n=0`
Maximum
As already shown in the Total Stopping Time Chapter`hat(o)_n` is solution of `((hat(o)_n),(n))=3^(hat(o)_n)`
Average
`S_(0,o)=r_n=sum_(o=0)^nr_(n,o)=sum_(o=0)^n((((o),(n)))/(3^o))=(4/3)^n``S_(1,o)=sum_(o=0)^n(r_(n,o)*o)=sum_(o=0)^n((((o),(n)))/(3^o)*o)=(4^(n-1)*n)/(3^n)`
`bar(o)_n=S_(1,o)/S_(0,o)=n/4`
Variance
`S_(2,o)=sum_(o=0)^n(r_(n,o)*o^2)=sum_(o=0)^n((((o),(n)))/(3^o)*o^2)=(4^(n-2)*(n^2+3*n))/(3^n)``bar(bar(o))_n=(S_(0,o)*S_(2,o)-S_(1,o)*S_(1,o))/(S_(0,o))^2=(3*n)/16`

Even Steps
with :`n=o + e`Minimum
`ul(e)_n=n-hat(o)_n`Maximum
`hat(e)_n=n-ul(o)_n=n`Average
`bar(e)_n=n-bar(o)_n=n-n/4=(3*n)/4`Variance
`S_(0,e)=S_(0,o)=(4/3)^n``S_(1,n)=sum_(o=0)^n(r_(n,o)*n)=n*r_n=n*(4/3)^n`
`S_(2,n)=sum_(o=0)^n(r_(n,o)*n^2)=n^2*r_n=n^2*(4/3)^n`
`S_(1,e)=sum_(o=0)^n(r_(n,o)*e)=sum_(o=0)^n(r_(n,o)*(n-o))=S_(1,n)-S_(1,o)`
`S_(1,e)=n*(4/3)^n-(4^(n-1)*n)/(3^n)=n*(4/3)^(n-1)`
`S_(2,e)=sum_(o=0)^n(r_(n,o)*e^2)=sum_(o=0)^n(r_(n,o)*(n-o)^2)=S_(2,n)+S_(2,o)-2*n*S_(1,o)`
`S_(2,e)=n^2*(4/3)^n+(4^(n-2)*(n^2+3*n))/(3^n)-2*n*(4^(n-1)*n)/(3^n)=(4/3)^n*((3*n+9*n^2)/16)`
`bar(bar(e))_n=(S_(0,e)*S_(2,e)-S_(1,e)*S_(1,e))/(S_(0,e))^2=(3*n)/16`

Height
with :`u=n*ln(2)-o*ln(3)`Minimum
`ul(u)_n=n*ln(2)-hat(o)_n*ln(3)`Maximum
`hat(u)_n=n*ln(2)-ul(o)_n*ln(3)=n*ln(2)`Average
`bar(u)_n=n*ln(2)-bar(o)_n*ln(3)=n*(4*ln(2)-ln(3))/4`Variance
`S_(0,u)=S_(0,o)=(4/3)^n``S_(1,u)=sum_(o=0)^n(r_(n,o)*(n*ln(2)-o*ln(3)))=S_(1,n)*ln(2)-S_(1,o)*ln(3)`
`S_(1,u)=(4/3)^n*(n*(4*ln(2)-ln(3)))/4`
`S_(2,u)=sum_(o=0)^n(r_(n,o)*(n*ln(2)-o*ln(3))^2)=S_(2,n)*ln(2)^2+S_(2,o)*ln(3)^2-2*ln(2)*ln(3)n*S_(1,o)`
`S_(2,u)=ln(2)^2*(4/3)^n*n^2+ln(3)^2*(4/3)^n*((3*n+n^2)/16)-2*ln(2)*ln(3)*n*(n/4)*(4/3)^n`
`S_(2,u)=(4/3)^n*((3*n*ln(3)^2+n^2*(16*ln(2)^2+ln(3)^2-8*ln(2)*ln(3)))/16)`
`S_(2,u)=(4/3)^n*((3*n*ln(3)^2+n^2*(4*ln(2)-ln(3))^2)/16)`
`bar(bar(u))_n= (S_(0,u)*S_(2,u)-S_(1,u)*S_(1,u))/(S_(0,u))^2 =(3*n*ln(3)^2)/16`

Completeness
with :`c=o/n`Minimum
`ul(c)_n=ul(o)_n/n=0`Maximum
`hat(c)_n=hat(o)_n/n`Average
`bar(c)_n=bar(o)_n/n=1/4`Variance
`bar(bar(c))_n=bar(bar(o))_n/(n^2)=3/(16*n)`
Finesse
with :`gamma=n/u=1/(ln(2)-c*ln(3))`Minimum
`ul(gamma)_n=1/(ln(2)-ul(c)_n*ln(3))=1/ln(2)`Maximum
`hat(gamma)_n=n/(n*ln(2)-hat(o)_n*ln(3))`Average
`gamma=n/u=n*(1/u)`with `bar((1/u))~~1/bar(u)+bar(bar(u))/bar(u)^3`
`bar(u)=K_1.n` with `K_1=(4*ln(2)-ln(3))/4`
`bar(gamma)_n~~(4*K_1^2*n+12*ln(3)^2)/(K_1^3*n^2)`
Variance
`gamma=n/u=n*(1/u)`with `bar(bar((1/u)))~~bar(bar(u))/bar(u)^4`
`bar(bar(gamma))_n~~(48*ln(3)^2)/(K_1^4*n)`

At given Height
As we cannot get significant estimates parameters around `u`, we use cumulated quantities from `1` to `e^u` instead, noted as capitals, and use the following corrections`overline(X)(xi)-xi*(del overline(X)(xi))/(del xi)=overline(x)(xi)`
`bar(bar(X))(xi)+xi*(del bar(bar(X))(xi))/(del xi)-xi^2*((del bar(X)(xi))/(del xi))^2=bar(bar(x))(xi)`
Quantities have been evaluated up to `2^(28)`
Summation values
using `u=n*ln(2)-o*ln(3)` to link `n`, `o` and `e` to u, we cannot use discrete summations, we use continous representation instead with results dependant of the parameter used.
with `n`:
`r_(u,n)=((((n*ln(2)-u)/ln(3)),(n)))/(3^((n*ln(2)-u)/ln(3)))`
`S_(0n)=int_(o=0)^(oo)r_(u,n)*dn=A_(0n)*e^u`
`S_(1n)=int_(o=0)^(oo)r_(u,n)*n*dn=(A_(1n)*u+B_(1n))*e^u`
`S_(2n)=int_(o=0)^(oo)r_(u,n)*n^2*dn=(A_(2n)*u^2+B_(2n)*u+C_(2n))*e^u`
with `o`:
`r_(u,o)=(((o),((u+o*ln(3))/ln(2))))/(3^((u+o*ln(3))/ln(2)))`
`S_(0o)=int_(o=0)^(oo)r_(u,o)*do=A_(0o)*e^u`
`S_(1o)=int_(o=0)^(oo)r_(u,o)*o*do=(A_(1o)*u+B_(1o))*e^u`
`S_(2o)=int_(o=0)^(oo)r_(u,o)*o^2*do=(A_(2o)*u^2+B_(2o)*u+C_(2o))*e^u`
with `e`:
`r_(u,e)=((((e*ln(2)-u)/(ln(3)-ln(2))),((e*ln(3)-u)/(ln(3)-ln(2)))))/(3^((e*ln(2)-u)/(ln(3)-ln(2)))`
`S_(0e)=int_(o=0)^(oo)r_(u,e)*de=A_(0o)*e^u`
`S_(1e)=int_(o=0)^(oo)r_(u,e)*e*de=(A_(1e)*u+B_(1e))*e^u`
`S_(2e)=int_(o=0)^(oo)r_(u,e)*e^2*de=(A_(2e)*u^2+B_(2e)*u+C_(2e))*e^u`
Total Stopping Time
`A_(0n)=C_1*ln(3)`
`A_(1n)=C_1^2*ln(3)`
`B_(1n)=C_1^3*ln(3)^3/4`
`A_(2n)=C_1^3*ln(3)`
`B_(2n)=C_1^4*(3*ln(3)^3)/4`
`C_(2n)=C_(2n)`
with `n=(u+o*ln(3))/ln(2)`
Minimum
`ul(n)_u=u/ln(2)`
Maximum
`hat(n)_u=(u+hat(o)_u*ln(3))/ln(2)`
Average
`bar(n)_u=S_(1n)/S_(0n)`
`bar(n)_u=(A_(1n)*u+B_(1n))/A_(0n)`
`bar(n)_u=A_(1n)/A_(0n)*u+B_(1n)/A_(0n)`
`bar(n)_u=C_1*u+o(u) rarr C_1*u `
Variance
`bar(bar(n))_u=(S_(2,n)*S_(0n)-S_(1n)^2)/S_(0n)^2`
`bar(bar(n))_u=(A_(2,n)*A_(0n)-A_(1n)^2)/A_(0n)^2*u^2+(B_(2n)*A_(0n)-2*A_(1n)*B_(1n))/A_(0n)^2*u+(C_(2n)*A_(0n)-B_(1n)^2)/A_(0n)^2`
with:
`A_(2n)*A_(0n)-A_(1n)^2=C_1*ln(3)*C_1^3*ln(3)/4-(C_1^2*ln(3)/2)^2=0`
`bar(bar(n))_u=(B_(2n)*A_(0n)-2*A_(1n)*B_(1n))/A_(0n)^2*u+o(u)`
`bar(bar(n))_u rarr C_1^3*ln(3)^2/4*u`
Odd Steps
`A_(0o)=C_1*ln(2)`
`A_(1o)=C_1^2*ln(2)/2`
`B_(1o)=C_1^3*(ln(2)^2*ln(3))/4`
`A_(2o)=C_1^3*ln(2)/4`
`B_(2o)=C_1^4*(ln(2)^3+ln(2)^2*ln(3))/4`
`C_(2o)=C_(2o)`
Minimum
`ul(o)_u=0`
Maximum
`hat(o)_u` is solution of :
`{(u=n*ln(2)-o*ln(3)),(((n),(o))=3^o):}`
Average
`bar(o)_u=S_(1o)/S_(0o)`
`bar(o)_u=(A_(1o)*u+B_(1o))/A_(0o)`
`bar(o)_u=A_(1o)/A_(0o)*u+B_(1o)/A_(0o)`
`bar(o)_u=C_1/2*u+o(u) rarr C_1/2*u `
Variance
`bar(bar(o))_u=(S_(2,o)*S_(0o)-S_(1o)^2)/S_(0o)^2`
`bar(bar(o))_u=(A_(2,o)*A_(0o)-A_(1o)^2)/A_(0o)^2*u^2+(B_(2o)*A_(0o)-2*A_(1o)*B_(1o))/A_(0o)^2*u+(C_(2o)*A_(0o)-B_(1o)^2)/A_(0o)^2`
with:
`A_(2o)*A_(0o)-A_(1o)^2=C_1*ln(2)*C_1^3*ln(2)/4-(C_1^2*ln(2)/2)^2=0`
`bar(bar(o))_u=(B_(2o)*A_(0o)-2*A_(1o)*B_(1o))/A_(0o)^2*u+o(u)`
`bar(bar(o))_u rarr C_1^3*ln(2)^2/4*u`
Even Steps
`A_(0e)=C_1*(ln(3)-ln(2))`
`A_(1e)=C_1^2*(ln(3)-ln(2))/2`
`B_(1e)=C_1^3*((ln(3)-ln(2))^2*ln(3))/4`
`A_(2e)=C_1^3*(ln(3)-ln(2))/4`
`B_(2e)=C_1^4*(2*ln(3)^3-ln(2)^3+4*ln(2)^2*ln(3)-5*ln(2)*ln(3)^3)/4`
`C_(2e)=C_(2e)`
Minimum
`ul(e)_u=u/ln(2)`
Maximum
`hat(e)_u=(u+hat(o)*(ln(3)-ln(2)))/ln(2)`
Average
`bar(e)_u=S_(1e)/S_(0e)`
`bar(e)_u=(A_(1e)*u+B_(1e))/A_(0e)`
`bar(e)_u=A_(1e)/A_(0e)*u+B_(1e)/A_(0e)`
`bar(e)_u=C_1/2*u+o(u) rarr C_1/2*u `
Variance
`bar(bar(e))_u=(S_(2,e)*S_(0e)-S_(1e)^2)/S_(0e)^2`
`bar(bar(e))_u=(A_(2,e)*A_(0e)-A_(1e)^2)/A_(0e)^2*u^2+(B_(2e)*A_(0e)-2*A_(1e)*B_(1e))/A_(0e)^2*u+(C_(2e)*A_(0e)-B_(1e)^2)/A_(0e)^2`
with:
`A_(2e)*A_(0e)-A_(1e)^2=C_1*(ln(3)-ln(2))*C_1^3*(ln(3)-ln(2))/4-(C_1^2*(ln(3)-ln(2))/2)^2=0`
`bar(bar(e))_u=(B_(2e)*A_(0e)-2*A_(1e)*B_(1e))/A_(0e)^2*u+o(u)`
`bar(bar(e))_u rarr C_1^3*(ln(3)-ln(2))^2/4*u`
Completeness
with :`c=(ln(2)-1/gamma)/ln(3)`
Minimum
`ul(c)_u=0`
Maximum
`hat(c)_u=(hat(o)*ln(2))/(u+hat(o)*ln(3))`
Average
`bar(c)_u=1/ln(3)*(ln(2)-bar((1/gamma)))`
with
`bar((1/gamma))~~1/bar(gamma)+bar(bar(gamma))/bar(gamma)^3`
and
`{(bar(gamma)
=C_1),(bar(bar(gamma))=(C_1^3*ln(3))/(4*u)):}`
`bar(c)_u~~1/2-1/(4*u)`
Variance
`bar(bar(c))_u=1/ln(3)^2*bar(bar((1/gamma)))`
with
`bar(bar((1/gamma)))~~bar(bar(gamma))/bar(gamma)^4`
`bar(bar(c))_u~~1/(4*C_1*u*ln(3))`

Finesse
with :`gamma=n/u`
Minimum
`ul(gamma)_u=ul(n)_u/u=1/ln(2)`
Maximum
`hat(gamma)_u=hat(n)_u/u=(u+hat(o)_u*ln(3))/(ln(2)*u)`
Average
`bar(gamma)_u=bar(n)_u/u=C_1`
Variance
`bar(bar(gamma))_u=bar(bar(n))_u/(u^2)=(C_1^3*ln(3))/(4*u)`
