Class Records

Congruence Classes

The repartition of the first class records in the congruence classes for primes under `50` is shown in Table bellow

Nb 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
0 174 379 196 151 93 75 57 42 47 27 37 24 32 23 20 15
1 826 280 197 128 95 83 56 37 51 30 28 21 35 25 19 24
2
341 215 150 106 86 61 37 42 33 36 20 19 27 19 19
3

187 149 90 86 61 56 42 28 33 22 18 22 22 17
4

205 144 97 77 56 55 41 31 33 34 20 25 18 18
5


131 79 89 74 48 56 24 37 32 23 20 22 20
6


147 88 88 59 58 47 43 31 29 29 30 19 20
7



71 60 55 59 42 39 30 33 28 22 25 19
8



101 87 66 58 42 22 31 34 30 32 13 22
9



87 68 64 59 46 33 31 24 24 26 22 20
10



93 71 58 49 51 42 29 17 25 25 21 18
11




64 60 52 44 42 38 32 26 27 22 24
12




66 60 61 32 44 30 28 23 26 22 24
13





63 47 44 34 24 21 20 20 25 15
14





60 64 40 35 38 19 36 22 25 18
15





46 53 36 25 35 31 25 23 24 13
16





44 53 34 25 35 21 24 20 17 24
17






53 36 47 28 30 19 22 23 19
18






59 33 35 45 29 18 24 25 14
19







54 42 31 27 20 20 19 20
20







49 28 28 23 16 18 25 18
21







43 34 28 25 32 33 23 23
22







48 34 42 23 23 17 19 20
23








37 43 30 25 21 24 18
24








48 25 32 19 21 20 18
25








32 34 31 30 25 25 21
26








31 23 27 28 26 21 20
27








41 26 26 22 25 22 12
28








34 22 21 30 26 16 18
29









33 36 17 15 24 20
30









36 30 31 27 21 18
31










32 22 20 22 17
32










25 31 21 19 22
33










31 25 18 24 18
34










27 26 23 21 16
35










29 21 30 23 20
36










24 24 20 18 18
37











15 22 11 16
38











19 21 20 26
39











20 16 21 21
40











30 29 21 14
41












29 24 14
42












16 14 18
43













25 21
44













27 18
45













24 17
46













24 20
47














22
48














19
49














16
50














23
51














19
52














16

For each base except `2` and `3`, the hypothesis that the class records are equally distributed in each congruence class can be accepted with a significance level of 95%

Repartition in Basis 2

We find, amongst the 1000 first class records, 174 even values and 826 odd values.

We can evaluate the theoretical repartition between odd and even values for the class records.
First, let `phi_k` be the class record for class `k`,
Let us define
`pi_(i,j)=Prob(phi_k-=i(j))`

Lemma:

`phi_k-=0(2) rArr phi_k=2*phi_(k-1)`

Proof:

Let us suppose that `phi_k=2*n` and `phi_(k-1)!=n`

By definition,
`{(phi_k in R_k,rArr sigma_oo(phi_k)=sigma_oo(2*n)=k),(,rArr sigma_oo(n)=k-1),(,rArr n in R_(k-1)):}`
and,
`phi_(k-1)=min(R_(k-1)) rArr phi_(k-1) le n`
as by hypothesis,
`phi_(k-1) != n rArr phi_(k-1) lt n`
thus,
`2*phi_(k-1) lt 2*n = phi_k`

On the other hand
`sigma_oo(2*phi_(k-1))=sigma_oo(phi_(k-1))+1=k rArr 2*phi_(k-1) in R_k`
which is a contradiction because `phi_k=min(R_k) ` ` square`

Let us consider the Total Stopping Time classes near the `k^(th)` and their records.
If `phi_k` is an element of `R_(k,o)`, `phi_(k-1)` can be either an element of `R_(k-1,o)` or `R_(k-1,o-1)`

Theorem:

The completeness being `c=o/k`, the probabilities are respectively:
`{(Prob(phi_(k-1) in R_(k-1,o))=1-c),(Prob(phi_(k-1) in R_(k-1,o-1))=c):}`

Proof:

If we define `R_(k,o,i)` the set of elements of `R_(k,o)` which are congruent to `i` modulo `3`, and `r_(k,o,i)` the number of elements of this set, the following graph summarizes the origin of the elements of and their quantities.


Any element of `R_(k,o)` can be either the predecessor of an element of `R_(k-1,o)` by an Even Step or the predecessor of an element of `R_(k-1,o-1,2)` by an Odd Step

And as all those sets are disjoints:
`r_(k,o)=r_(k,o,0)+r_(k,o,1)+r_(k,o,2)`
`r_(k,o)=r_(k-1,o)+r_(k-1,o-1,2)`

Per the binomial model:
`r_(k,o)=(((k),(o)))/3^o`
`r_(k-1,o)=(((k-1),(o)))/3^o=(k-o)/k*(((k),(o)))/3^o=(k-o)/k*r_(k,o)`
`rArr Prob(phi_(k-1) in R_(k-1,o))=r_(k-1,o)/r_(k,o)=(k-o)/k=1-c`
`r_(k-1,o-1)=(((k-1),(o-1)))/3^(o-1)=o/k*(((k),(o)))/3^(o-1)=(3*o)/k*r_(k,o)`

and if we consider the elements of `R_(k−1,o−1)` evenly distributed among equivalence classes modulo `3`:
`r_(k-1,o-1,2)=r_(k-1,o-1)/3=o/k*r_(k,o)`
`rArr Prob(phi_(k-1) in R_(k-1,o-1))=r_(k-1,o-1,2)/r_(k,o)=o/k=c`
We can verify that `Prob(phi_(k-1) in R_(k-1,o))+Prob(phi_(k-1) in R_(k-1,o-1))=1 ` `square`

The elements of `R_(k,o)` have successors following a trajectory with `o=c*k` odd steps and `(k-o)=(1-c)*k` even steps. As a consequence they are coming from `R_(k-1,o-1)` with probability `c` and from `R_(k-1,o)` with probability `(1-c)`.
`{(Prob(F(phi_k) in R_(k-1,o))=(1-c)),(Prob(F(phi_k) in R_(k-1,o-1)=c)):}`

`phi_k` being even is then: `phi_(k-1)` is an element of `R_(k-1,o)` and `phi_k` is coming from `R_(k-1,o)`
This probability is:
`{:(pi_(0,2),=Prob(phi_k-=0(2))),(,=Prob(phi_(k-1) in R_(k-1,o)) xx Prob(F(phi_k) in R_(k-1,o))),(,=(1-c)^2):}`

For class records up to class 1000, the average completeness is 0,58327.
This leads to `pi_(0,2)=0,17366`, or an estimation of 173,66 even class records.
The real number of even class records is 174.

In the Figure bellow we show `pi_(0,2)` and the real number of even class records up to class `k`.

Repartition in Basis 3

Using the properties of Threads (see Threads Chapter) we can estimate that the repartition of class records in equivalence classes modulo 3, as shown in Figure bellow.

`{:(hat pi_(0,3)=0.3830),(hat pi_(1,3)=0.2604),(hat pi_(2,3)=0.3566):}`

For the 1445 first class records, the real proportions are:
`{:(pi_(0,3)=542//1445=0.3751),(pi_(1,3)=398//1445=0.2754),(pi_(2,3)=505//1445=0.3495):}`

Prime Class Records

Taking into account:
The model for odd Class records: `pi_(1,2)=1-pi_(0,2)=2*c-c^2`,
the estimation for a class record non being divided by 3: `1-pi_(0,3)`,
and the basic probability of a number `n` to be prime: `1/ln(n)`,

The probability for each Class Record `phi_k` having a completeness `c_k` to be a prime is:
`Prob(phi_k text{ is prime})=Prob(phi_k-=1(2)xxProb((phi_k-=1(3)vv(phi_k-=2(3))xx Prob(phi_k text{ is prime}|not(phi_k-=0(2))^^not(phi_k-=0(3)))`
`Prob(phi_k text{ is prime})=pi_(1,2)*(pi_(1,3)+pi_(2,3))*1/ln(phi_k)*(1/2)^(-1)*(2/3)^(-1)`
`Prob(phi_k text{ is prime})=(3*(2*c_k-c_k^2)*(1-pi_(0,3)))/ln(phi_k)`

And the number of prime estimated up to the class `k` is:
`sum_(i=0)^k((3*(2*c_i-c_i^2)*(1-pi_(0,3)))/ln(phi_i))`

The Figure bellow shows this estimation and the real number of prime class records up to class 1445.

NUMBER OF PRIME FACTORS FOR Class Records

Taking into account:
the estimation of prime factors for any number `n`, `omega(n)=ln(ln(n))`

The Figure bellow shows this estimation and the real number of prime factors for class records up to class 1445.